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The Effect of the Reference Frame on the 
Thermophysical Properties of an Ideal Gas 1 

C. G. Speziale 2'3 

The effect that the flame of reference has on the thermophysical properties of an 
ideal gas is examined from a fundamental theoretical standpoint based on the 
Boltzmann equation. In continuum mechanics, the principle of material flame- 
indifference forbids the thermophysical properties of a fluid or solid to depend 
in any way on the motion of the reference frame. It is demonstrated that the 
Boltzmann equation is only consistent with material frame-indifference in a 
strong approximate sense provided that the gas is not highly rarefied and, thus, 
well within the limits of classical continuum mechanics. Estimates of the mean 
free times for which material frame-indifference can be invoked in the modeling 
of gas flows are provided from an analysis of the problem of heat conduction in 
a rigidly rotating gas. Applications of these results in obtaining asymptotic 
solutions of the Boltzmann equation for the continuum description of an ideal 
gas are discussed briefly. 

KEY WORDS: Boltzmann equation; continuum mechanics; frame-indif- 
ference; kinetic theory; mean free time. 

1. I N T R O D U C T I O N  

A controversy has developed during the past decade over the consistency of 
the principle of material frame-indifference of modern continuum 
mechanics with the kinetic theory of gases [1-11]. Material frame-indif- 
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ference requires constitutive equations for the stress and heat flux to be 
form invariant under arbitrary time-dependent rotations and translations 
of the frame of reference. However, expressions obtained by the Chap- 
man-Enskog and Maxwellian iterations for an ideal gas (which are 
analogous to constitutive equations in continuum mechanics) depend 
explicitly on the rotation rate of the framing through the spin tensor, in 
apparent violation of this principle [1, 2]. This disparity in invariance 
properties has created two opposing camps among researchers in this field: 
those who believe that the iterative procedures for solving the Boltzmann 
equation are defective and those who believe that material frame-indif- 
ference should be abandoned as a general principle of continuum 
mechanics. 

The purpose of the present paper is to review the most recent develop- 
ments in this controversy and to present an alternative position which, as it 
turns out, lies somewhere in between the two extreme opposing views cited 
above. Unlike in the previous studies [1-11], this question is approached 
by a direct analysis of the Boltzmann equation. The main physical con- 
sequence of material frame-indifference (namely, the fact that it forbids the 
values of the stress tensor and heat flux to be altered by the superposition 
of a rigid body motion on a given thermomechanical process) is compared 
with the Boltzmann equation for the test problem of heat conduction in a 
rigidly rotating gas. In this manner, the problem is simplified to the 
examination of values of constitutive functions rather than their invariance 
properties, thus making a direct comparison with the Boltzmann equation 
possible (a preliminary investigation along these lines was presented by 
Speziale [12]). It is demonstrated that the Boltzmann equation, in its full 
generality, is not consistent with the main physical consequence of material 
frame-indifference mentioned above as a result of unbalanced molecular 
Coriolis forces. However, the two are in excellent approximate agreement 
provided that the mean free time of the gas is extremely small. Since con- 
stitutive equations, in the classical continuum mechanics sense, require 
equivalently small mean free times for their existence, it is argued that the 
Boltzmann equation supports the application of material frame-indifference 
for classical continuum mechanics problems. However, it does break down 
for highly rarefied gases, where the thermophysical properties can vary 
depending on whether the frame of reference is inertial or not. Estimates of 
the mean free times for which this occurs are provided, along with possible 
applications of these results to the modeling of transport processes in ideal 
gases. 



Effect of Reference Frame on Properties 101 

2. THE C O N T R O V E R S Y  OVER MATERIAL 
F R A M E - I N D I F F E R E N C E  

In classical continuum mechanics, the balance laws are those for mass, 
linear momentum, angular momentum, and energy which, respectively, 
take the form 

~3t t- ~-kXk (PVk) = 0 (1) 

= ~ +  pbk (2) pt~k 

Tkl = Ttk (3) 

~vt ~qk 
p~ = T k , - -  (4) 

#xk c~xk 

(cf., Truesdell and Noll [13]), where p is the mass density, v is the velocity 
field, T is the stress tensor, b is the external body force per unit mass, e is 
the internal energy density, and q is the heat flux vector. In Eqs. (1)-(4), 
the Einstein summation convention applies to repeated indices, a super- 
posed dot denotes the material time derivative, and the presence of any 
energy sources has been neglected. The equations of motion (1)-(4) are not 
closed unless constitutive equations are provided that tie T, q, and e to the 
global history of the motion and temperature of the continuum. For fluids, 
these constitutive equations are of the general form 

T(x, t )=  T[v(x', t'), 0(x', t'); x, t] 
(5) 

x' 6~U, t' e(-~, t)  
q(x, t) = q[v(x',  t'), 0(x', t'); x, t] 

(6) 
x ' e ~ ,  t ' e ( - ~ ,  t) 

e(x, t) = e[v(x', t'), 0(x', t'); x, t] 
(7) 

x ' e ~ ,  t 'e(-~,t) 

where 0 is the absolute temperature and the bracket denotes a functional 
(i.e., any quantity determined by a function). The principle of material 
frame-indifference of modern continuum mechanics requires that these con- 
stitutive equations be form invariant under arbitrary time-dependent 
rotations and translations of the spatial frame of reference [13]. Con- 
sequently, when material frame-indifference is invoked, the constitutive 
Eqs. (5)-(7) will be of the same form whether or not the frame is inertial. 
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The kinetic theory for a dilute monatomic gas is based on the 
Boltzmann equation, which takes the form 

af c . V + b .  ~f 
~ +  ~cc=CEf] (8) 

wherefis  the phase density function, e is the molecular velocity, and C [ f ]  
is the collision operator (cf. Chapman and Cowling [14]), which is not 
written out in detail since the results obtained will not depend on its 
specific form. The molecular velocity e is decomposed into a macroscopic 
and peculiar velocity, respectively, as follows [14] 

e = v + u  (9) 

where 

V = - e f d 3 c  (10) 
/7 c 

and n is the number density, i.e., 

n = f & f d  3c 

Various other macroscopic fields are then defined as follows: 

11) 

p = mn, O = -~nkn f s u " u f  d3 c 12) 
c 

Tkt= --m ukuz f  d3c, q~ =-~ u" u u k f  d3c 13) 
c r 

where m is the molecular mass and k is the Boltzmann constant. The 
kinetic theory gives rise to the expression [14] 

3 k  
e = ~ m 0  (14) 

which is a special case of the more general thermomechanical constitutive 
Eq. (7). Furthermore, by taking moments of the Boltzmann equation with 
m, e, and e.e,  respectively, the balance laws of continuum mechanics given 
by Eqs. (1), (2), and (4) are obtained. The symmetry of the stress tensor 
follows from its definition given in Eq. (13). Hence, the kinetic theory of 
gases is comparable to continuum mechanics if expressions for the stress 
tensor and heat flux of the form of Eqs. (5) and (6) can be obtained from 
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the Boltzmann equation. Provided that the gas is not highly rarefied, the 
Chapman Enskog iteration, the Maxwellian iteration, or a generalized 
mean free path model can be used to obtain higher-order approximations 
for the stress tensor and heat flux vector that transcend Navier-Stokes 
theory and Fourier's law of heat conduction. The expressions obtained 
from these approaches are of the same general form as the continuum con- 
stitutive Eqs. (5) and (6). However, they contain the spin tensor 

1 (0vk 0vt) (15) 
c~ \~xt 0x~/ 

which is a frame-dependent tensor. More specifically, the spin tensor in a 
rotating frame of reference x* is related to that in an inertial framing x by 
the equation 

= m* + dual ~ (16) 

where dual ~ is the antisymmetric tensor formed from the rotation rate 
of the framing x*. Consequently, these iterative procedures yield 
expressions for the stress tensor and heat flux vector in an ideal gas, which 
depend on the motion of the framing in violation of material frame-indif- 
ference. 

Miiller [1] and Edelen and McLennan [2] demonstrated that the 
Maxwellian iteration and Chapman-Enskog iteration, respectively, give 
rise to expressions for the stress and heat flux which are frame-dependent 
starting with the third approximation (i.e., the Burnett equations). These 
authors then argued that the kinetic theory of gases was not in support of 
material frame-indifference, and hence, constitutive equations should be 
allowed to depend on the frame of reference. Subsequently, S6derholm [3] 
claimed to produce a simple physical argument that justified the presence 
of the frame-dependent terms in the Burnett equations. This led him to 
conclude that there were severe limitations on the domain of validity of 
material frame-indifference. Wang I-4] took exception to the claims of M/fil- 
ler [1] and Edelen and McLennan [2] on the grounds that these iterative 
schemes, at best, yield approximate expansions for the stress and heat flux 
and it is well known that such approximations can destroy invariance 
properties. He gave the counterexample of the Taylor expansion for the 
sin x given by 

x 3 
sin x = x-~-.~ + ... (17) 

While the sin x is periodic (i.e., invariant under shifts of 2re in the 
variable x), no partial sum of its expansion exhibits the same invariance 
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property. Truesdell [5] argued that while the results obtained by the 
Chapman-Enskog and Maxwellian iterations are similar in form to con- 
stitutive equations in continuum mechanics, it is wrong to regard them as 
such since the variables entering these equations are not independent. He 
then proceeded to argue that it is probably not possible even to ask the 
question as to whether these kinetic theory results are consistent with 
material frame-indifference since a time-dependent rotation could give rise 
to a velocity field which is inconsistent with the Boltzmann equation, thus 
making the equations obtained by these iterative procedures invalid when 
subjected to a change of frame. Speziale [-6] explicitly showed where the 
frame dependence enters into the Chapman Enskog iteration and 
demonstrated that if a given macroscopic process is a member of the 
Chapman-Enskog class, then one which differs by an arbitrary rigid body 
motion will not be. The author than argued that the iterative procedures in 
the kinetic theory are defective and should be abandoned in favor of ones 
which are consistent with material frame-indifference. 

Woods [-7], who had previously shown that the same kind of frame- 
dependent terms which appear in the Burnett equations can be obtained 
from a generalized mean free path model, staunchly argued that material 
frame-indifference is valid only for the linear theory and should be aban- 
doned as a general axiom of continuum mechanics. This initiated a debate 
with Green [8, 9], who took the opposite position in support of material 
frame-indifference. Woods [-10] eventually reversed his position and 
developed a frame-indifferent kinetic theory by altering the definition of the 
peculiar velocity. More recently, Murdoch [11 ] argued that the criticisms 
of material frame-indifference based on these iterative procedures in the 
kinetic theory are without foundation. He claimed that there is actually no 
conflict with material frame-indifference since the equations obtained from 
these iterative procedures only depend on the rotation rate ~ through the 
intrinsic spin tensor 

co* + dual 

This is the spin tensor relative to an inertial framing--an object which he 
argued is a valid constitutive variable since it allows for the values of the 
stress and heat flux obtained from it to transform in an invariant manner 
under a change of observer. However, it should be noted that such con- 
stitutive equations are not consistent with the principle of material frame- 
indifference as it is usually formulated 1-13], since in order to write the 
correct form of the equation it is necessary to know a priori the motion of 
the given frame of reference relative to an inertial one. 

The conflicting arguments over material frame-indifference, briefly 
reviewed above, have generated a considerable amount of confusion among 
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researchers in mechanics. In the next section, an attempt is made to clarify 
this issue by a direct appeal to the Boltzmann equation. A preliminary 
investigation along these lines was presented by Speziale [12] which 
yielded conclusions that lie somewhere in between the extreme opposing 
positions cited above (including those initially proposed by the 
author [6] ). 

3. THE BOLTZMANN EQUATION AND HEAT CONDUCTION IN 
A RIGIDLY ROTATING GAS 

The general problem to be considered is that of steady heat conduc- 
tion in a rigidly rotating gas (with constant angular velocity fl) that can be 
initiated by the application of boundary conditions which have a disparity 
in temperature. An extra body force of the amount 

bE=f~x(flxx*) (18) 

will be applied in the rotating frame x* in order to balance the centrifugal 
acceleration generated by the rotation. This physical problem was chosen 
since it contains the critical effect of rigid rotations in a relatively simple 
context. It was proven by Speziale [12] that the Boltzmann equation in 
the kinetic theory is completely consistent with material frame-indifference 
insofar as translational accelerations of the frame of reference are concer- 
ned (Wang [4] first noted that the results of the Chapman-Enskog and 
Maxwellian iterations were invariant under translational accelerations of 
the framing). Another important reason for choosing this problem is that it 
was considered by Miller [1] and S6derholm [-3] for the Burnett 
approximation. In this way, a basis for comparison is established. 

The field Eqs. (1), (2), and (4) of continuum mechanics take the coor- 
dinate free from [ 1 ] 

~?p* 
- - +  V*" ( p ' v * )  = 0 (19)  
•t* 

(20) 

p*~* = tr(T* �9 V'v*) - V* .q* (21) 

p*4* = V*" T* + p'b* - p*~ x (~ x x*) - 2p*~ x v* 

in a steadily rotating frame of reference x*, where tr(.) denotes the trace. 
For the problem of steady heat conduction, 

V*=0 

and the field variables are time independent. Furthermore, as stated earlier, 
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we are considering the case where an extra body force of the form of 
Eq. (t8) is applied in the rotating frame so that 

b* = b + bE (22) 

By making use of these results, it follows that Eq. (19) is satisfied iden- 
tically and Eqs. (20) and (21) take the form 

V*. T* + p*b = 0 (23) 

V*. q* = 0 (24) 

If material frame-indifference is invoked, then the general constitutive Eqs. 
(5)-(7) must take the same form in the rotating frame x*, i.e., 

T*(x, t) = T[v*(x' ,  t'), 0*(x', t'); x, t] 
(25) 

x ' s ~ ,  t ' e ( - o o ,  t) 

q*(x, t )=  q[v*(x', t'), 0*(x', t'); x, t] 
(26) 

x ' ~ U ,  t ' ~ ( - o o ,  t) 

~*(x, t) -- ~;[v*(x', t'), O*(x', r); x, t] 
(27) 

x ' z ~ ,  t ' z ( - ~ , t )  

where, for the problem under consideration, v* must be set equal to zero. It 
is clear that Eqs. (23) and (24), when solved in conjunction with Eqs. 
(25)-(27), have solutions such that 

T* =T (28) 

q* = q  (29) 

as a result of the fact that these equations are independent of the motion of 
the frame of reference. Thus, a continuum theory where material frame- 
indifference is invoked yields the same values of stress and heat flux for the 
problem of steady heat conduction in a centrifugally balanced rotating gas no 
matter what its rotation rate f~ is. 

It is now demonstrated that these results from continuum mechanics 
for heat conduction in a rigidly rotating gas are not generally consistent 
with the Boltzmann equation. In a steadily rotating frame x*, the 
Boltzmann equation takes the form [1 ] 

0f* 
0f*c ~t ---T -t- c* - V ' i *  + [ b * - ~  x ( ~  x x * ) -  2 ~  x c*] �9 ~ = C [ / * ]  (30) 
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and, hence, is not of the same form as its inertial counterpart, Eq. (8). For 
the problem of steady heat conduction in a centrifugally balanced rotating 
gas, Eq. (30) reduces to the form 

•f* + - - +  c * '  V ' f *  + (b - 2 ~  • c * )  "- - z  = C { ~ f  * ] ( 3 1 )  
Ot* r  * 

where Eq. (22) is made use of. Obviously, the form of this equation 
changes depending on what value the rotation rate of the frame (i.e., the 
gas) takes. Hence, Eq. (31) will have solutions such that, in general, 

f *  # f (32) 

and (since v*= 0) 

T* = -rn fs c*e*f*d3c* # T  (33) 
c 

q * : ~ -  (c*.c*)e*f*d3c* #q  
c 

(34) 

The values of the stress and heat flux for this test problem of heat conduc- 
tion in a rigidly rotating gas depend, in general, on the rotation rate of the 
gas 1"~. This is in contradiction of a continuum theory where material 
frame-indifference is invoked. A simple examination of Eq. (31) shows that 
this difference arises as a result of an unbalanced molecular Coriolis 
force--the same source that Miiller [ 1 ] attributed to the failure of material 
frame-indifference of results obtained from the Maxwellian iteration. 

It is now clear that the Boltzmann equation in its full generality is not 
consistent with material frame-indifference. However, it will be shown that 
this inconsistency is of no consequence unless the gas is highly rarefied and, 
thus, outside of the domain of classical continuum mechanics. By the 
introduction of the length scale I0 and time scale to, which are, respectively, 
the mean free path and mean free time, Eq. (31) takes the dimensionless 
form 

•f* 0t* ~-e*- V ' f *  + ( b -  2g2tok xc*) .  Of* - - -  0--~ = C [ f * ]  (35) 

where f~ = f2k (i.e., k is a unit vector along the axis of rotation). It is quite 
clear that if 

f2t o ~ 1 (36) 
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then the Coriolis term in Eq. (31) will be negligibly small in comparison to 
the convective term Of*/~t*+e*.V*f*, and hence, Eq.(31) will have 
solutions such that 

f*,~ f (37) 

T * ~ T  (38) 

q * ~ q  (39) 

Material frame-indifference would then be valid in a strong approximate 
sense. 

The largest rotation rate that can be obtained in a feasible centrifuge is 
of the order of 

Q = 10 4 s -1  (40) 

which constitutes an enormously rapid rotation. Furthermore, for most 
common monatomic gases (e.g., hydrogen) at standard temperature and 
pressure, the mean free time is of the order of [14] 

t o=10  S0s (41) 

Hence, the dimensionless rotation rate will be bounded by 

s 10 6 (42) 

for gases which are strongly within the continuum limit. Hence, the error 
introduced by the application of material frame-indifference would be of 
the order of one part in a million or less! For the overwhelming majority of 
engineering applications, rotation rates are not encountered that are 
greater than 10 2 S -  I. In such circumstances, the mean free time would have 
to be such that 

t0 /> 1 0 - 4 S  (43) 

in order for frame-dependent effects to be of real significance (i.e., to con- 
stitute more than a 1% effect). Of course, gases with such mean free times 
are highly rarefied and outside of the usual continuum description [14]. To 
be more specific, while the Boltzmann equation would still apply, con- 
stitutive-like equations obtained from the Chapman-Enskog and 
Maxwellian iterations would no longer be valid. 

Finally, some comments should be made concerning how these results 
compare with the more recent study of Heckl and Mfiller [15] dealing 
with mixtures of gases. In this study (which was not based on a direct 
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analysis of the Boltzmann equation) they concluded that, for a rigidly 
rotating gas, the frame-dependent terms obtained from the closure of the 
equations of transfer are of the order of the ratio of the time of free flight of 
a molecule to the period of ro ta t ion--a  quantity which is extremely small 
unless the gas is highly dilute. Hence, the results obtained in this paper are 
consistent with those obtained by Heckl and Miiller [15]. 

4. C O N C L U S I O N  

It has been demonstrated that the Boltzmann equation, in its full 
generality, is not consistent with the main physical consequence of material 
frame-indifference, which requires that the values of the stress tensor and 
heat flux vector remain unaffected when a rigid body motion is superim- 
posed on a given thermomechanical process. This inconsistency, which 
arises because of the presence of unbalanced molecular Coriolis forces, was 
explicitly shown for the test problem of steady heat conduction in a cen- 
trifugally balanced rotating gas. For most common gases at standard tem- 
perature and pressure, the frame-dependent terms were shown to be 
negligibly small (i.e., to yield a correction of no more than one part in a 
million) even for the most rapid rotation which can be feasibly produced in 
the laboratory. However, for highly rarefied gases, the frame-dependent 
terms could make a nonnegligible contribution, thus making the ther- 
mophysical properties of such a gas vary depending on whether the frame 
of reference is inertial or not. 

Classical continuum mechanics assumes the existence of constitutive 
equations where the stress and heat flux depend locally on the motion and 
temperature of the medium. For  such equations to exist, the time scale of 
the molecular motion (e.g., the mean free time in an ideal gas) must be 
extremely small--the same limit in which the kinetic theory of gases was 
shown to be consistent with material frame-indifference. Hence, the results 
of this study strongly suggest that material frame-indifference can be 
invoked as an axiom in the formulation of such constitutive equations 
without introducing any significant error. In fact, since material frame- 
indifference provides such a powerful tool for restricting the allowable form 
of constitutive equations, it would simply be unintelligent not to make use 
of it in the formulation of phenomenological models, which are not expec- 
ted to have an extraordinarily fine level of accuracy so that such incon- 
sistencies would matter. However, there is a need for caution in the 
application of material frame-indifference in the formulation of some of the 
more modern continuum theories which include large-scale nonlocal effects 
[16, 17]. Such theories contain a microscale which can be significant in 
comparison to the geometrical scale of the problem. This constitutes a 
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situation analogous to a highly rarefied gas, for which the results of this 
study suggest that the application of material frame-indifference could give 
rise to a nonnegligible error. Greater insight on this issue would be gained 
if an analytical or computational solution of the Boltzmann equation could 
be obtained for some simplified problem involving the rigid rotation of a 
highly rarefied gas. 
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